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Combinatorial Problems in (Graphical) Coding

Find the Minimum Stopping Set of a code. Algorithm to
derive a tight lower bound. [Difficult. Focus of the talk.]

Find the Minimum Codeword of a code. Lower bound.
[Difficult. Will not be discussed today, can be done by
analogy.]

Improve decoding beyond LP-BP, when the later failed
[Significantly easier. Will only be mentioned in passing.]
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Main Ideas

Algorithm for lower bound on the minimal stopping set of a code

Pose it as a combinatorial problem

Approach it first with LP ⇒ the output is guaranteed to be a
lower bound (possibly loose)

Improve the lower bound tightening the relaxation. Two
complementary tricks (applied sequentially and multiple
times) are to be employed here:
a) bit fixing (straightforward)
b) add new constraints associated with frustrated
sub-graph(s), e.g. loops and generalized loops.
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Error Correction

Scheme:

Example of Additive White Gaussian Channel:

P(xout |xin) =
∏

i=bits

p(xout;i |xin;i )

p(x|y) ∼ exp(−s2(x − y)2
/2)

Channel
is noisy ”black box” with only statistical information available

Encoding:
use redundancy to redistribute damaging effect of the noise

Decoding [Algorithm]:
reconstruct most probable codeword by noisy (polluted) channel

Misha Chertkov, Los Alamos http://cnls.lanl.gov/∼chertkov/Talks/IT/frustration.pdf



Introduction
Maximizing Low-Bound on the Minimum Stopping Set

Conclusions & Path Forward

Graphical Codes. Efficient but Suboptimal Decodings.
Error Floor. Upper Bounds on Effective Distance.

Low Density Parity Check Codes

N bits, M checks, L = N − M information bits
example: N = 10,M = 5, L = 5

2L codewords of 2N possible patterns

Parity check: Ĥv = c = 0
example:

Ĥ =


1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1


LDPC = graph (parity check matrix) is sparse
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Statistical Inference e.g. decoding a code

σorig ⇒ x ⇒ σ

original

data
σorig ∈ C
codeword

noisy channel

P(x|σ)

corrupted

data:

log-likelihood

statistical

inference

possible

preimage

σ ∈ C

σ = (σ1, · · · , σN ), N finite, σi = ±1 (example)

Maximum Likelihood
Marginal Probability

arg max
σ
P(σ|x) arg max

σi

∑
σ\σi

P(x|σ)

Exhaustive search is generally expensive:
complexity of the algorithm ∼ 2N
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Graphical models

Factorization (Forney ’01, Loeliger ’01)

P(σ|x) = Z−1
∏

a

fa(xa|σa)

Z(x) =
∑
σ

∏
a

fa(xa|σa))︸ ︷︷ ︸
partition function

fa ≥ 0

σab = σba = ±1

σ1 = (σ12, σ14, σ18)

σ2 = (σ12, σ13)

Error-Correction (linear code, bipartite Tanner graph)

fi (hi |σi ) = exp(σi hi )·
{

1, ∀α, β 3 i , σiα = σiβ

0, otherwise

fα(σα) = δ

∏
i∈α

σi ,+1


hi - log-likelihoods
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Suboptimal but Efficient Decoding

MAP≈BP=Belief-Propagation (Bethe-Pieirls): iterative ⇒ Gallager ’61; MacKay ’98

Exact on a tree

Trading optimality for reduction in complexity: ∼ 2L →∼ L

BP = solving equations on the graph:

ηαj = hj +
j∈β∑
β 6=α

tanh−1

(
i∈β∏
i 6=j

tanh ηβi

)
⇐ LDPC representation

Message Passing = iterative BP

Convergence of MP to minimum of Bethe Free energy can be enforced

Bethe free energy: variational approach
(Yedidia,Freeman,Weiss ’01 - inspired by Bethe ’35, Peierls ’36)

F = −
∑

a

∑
σa

ba(σa) ln fa(σa)

︸ ︷︷ ︸
self-energy

+
∑

a

∑
σa

ba(σa) ln ba(σa)−
∑
(a,c)

bac (σac ) ln bac (σac )

︸ ︷︷ ︸
configurational entropy

∀ a; c ∈ a :
∑

σa
ba(σa) = 1, bac (σac ) =

∑
σa\σac

ba(σa)

⇒Belief-Propagation Equations: δF
δb

∣∣
constr.

= 0
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Linear Programming version of Belief Propagation

In the limit of large SNR, ln fa → ±∞: BP→LP

Minimize F ≈ E = −
∑
a

∑
σa

ba(σa) ln fa(σa) = self energy

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger ’03

ML can be restated as an LP over a codeword polytope

LP decoding is a “local codewords” relaxation of LP-ML

Codeword convergence certificate

Discrete and Nice for Analysis

Can be improved ( ... kind of a subject of the talk)
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Error-Floor

Signal-to-Noise Ratio

E
rr

or
 R

at
e

Ensembles of LDPC codes

Error floor

Waterfall

Optimized II

Optimized I

Random

Old/bad
codes

T. Richardson ’03 (EF)

Density evolution does
not apply (to EF)

BER vs SNR = measure of
performance

Finite size effects

Waterfall ↔ Error-floor

Error-floor typically emerges due
to sub-optimality of decoding,
i.e. due to unaccounted loops

Monte-Carlo is useless at
FER . 10−8
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Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords:

Wiberg ’96; Forney et.al’99; Frey et.al ’01;

Richardson ’03; Vontobel, Koetter ’04-’06

Instanton = optimal config. of the noise

BER =

∫
d(noise) WEIGHT (noise)

BER ∼WEIGHT

(
optimal conf
of the noise

)
optimal conf
of the noise

=
Point at the ES
closest to ”0”

Instantons are decoded to Pseudo-Codewords

Pseudo-codeword with the smallest effective
distance controls BER at SNR→∞

Instanton-amoeba

= optimization heuristics
[e.g. outputs an upper bound

on the smallest effective

distance]

M.Stepanov, MC, Chernyak,

B.Vasic ’04,’05; MS,MC ’06

LP-specific: MC,MS ’08

+Chillapagari,MS,MC,BV ’09-
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BEC. Minimum Stopping Set.

BP/LP fails on the stopping sets

σ = (σi = 0, 1|i = 1, · · · ,N; s.t. ∀α =

1, · · · ,M :
∑

i∈α σi 6= 1;
∑

i σi > 0)
0 0

1 1

*

1

1





Minimum (l0-norm) Stopping Set (MSS)

MSS controls BER at SNR→∞ [quality of the code]

Finding MSS is NP-hard [Krishnan & Shankar ’07, McGregor
Milenkovic ’07] ... worst case

We (and others) are trying to “crack it” for particular finite
size codes
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BEC. Minimum Stopping Set. [incomplete bibliography]

C. Di , D. Proietti , I. E. Telatar , T. J. Richardson and R. L. Urbanke ”Finite
length analysis of low-density parity-check codes on the binary erasure channel”
[significance of stopping sets] (2002)

A. Orlitsky , K. Viswanathan and J. Zhang ” Stopping set distribution of LDPC
code ensembles” (2005)

T. Tian , C. Jones , J. D. Villasenor and R. D. Wesel ”Construction of irregular
LDPC codes with low error floors” (2003)

A. Orlitsky , R. Urbanke , K. Viswanathan and J. Zhang ”Stopping sets and
girth of Tanner graphs” [the larger the girth the larger MSS], (2004)

M. Schwartz and A. Vardy ”On the stopping distance and the stopping
redundancy of codes” [playing with parity check/graph], (2006)

E. Rosnes, O. Ytrehus, ”An Efficient Algorithm to Find All Small-Size Stopping
Sets of Low-Density Parity-Check Matrices” [branch and bound /bit fixing],
(2009)
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Combinatorial Optimization → [relaxation] LP-BP

min
σ

∑
i

σi

s.t.
∑

i

σi > 0

∀i : σi = {0, 1}

∀α :
∑
i∈α

σi 6= 1.

min
b

∑
i

∑
σi

σi bi (σi )

s.t. ∀α :
∑
σα

bα(σα) = 1

∀α, ∀i ∼ α : bi (σi )=
∑

σα\σi

bα(σα)

∀α, ∀σα s.t.
∑
i∼α

σi = 1 : bα(σα) = 0

∑
i

∑
σi
σi bi (σi ) ≥ 1

Breaks the symmetry and gives an informative [graph
inhomogeneous] output
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Combinatorial Optimization → [relaxation] LP-BP

min
σ

∑
i

σi

s.t.
∑

i

σi > 0

∀i : σi = {0, 1}

∀α :
∑
i∈α

σi 6= 1.

min
b

∑
i

∑
σi

σi bi (σi )

s.t. ∀α :
∑
σα

bα(σα) = 1

∀α, ∀i ∼ α : bi (σi )=
∑

σα\σi

bα(σα)

∀α, ∀σα s.t.
∑
i∼α

σi = 1 : bα(σα) = 0

(a) choose a bit, j , bj (1) = 1;
(b) repeat ∀j

Breaks the symmetry and gives an informative [graph
inhomogeneous] output
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LP-BP for MSS. Graphical Model.
min

b

∑
i

∑
σi

σi bi (σi )

s.t. ∀α :
∑
σα

bα(σα) = 1

∀α, ∀i ∼ α : bi (σi )=
∑
σα\σi

bα(σα)

∀α, ∀σα s.t.
∑
i∼α

σi = 1 : bα(σα) = 0

(a) choose a bit, j , bj (1) = 1; (b)

repeat ∀j

1,01  1,02 

1,05 

1,03 

1,04 

)( f

)( f
)( f

)( f

),( 41  

),,( 321  










1,0

1,1
)(

41

41






    

    
f

Mind the Gap!

Provable lower bound minj LP-BPj :-)

But ... the lower bound is loose (8.21 instead of 18 for the
(155, 93) Tanner code) :-(

Let us try to reduce the gap ⇒

Misha Chertkov, Los Alamos http://cnls.lanl.gov/∼chertkov/Talks/IT/frustration.pdf



Introduction
Maximizing Low-Bound on the Minimum Stopping Set

Conclusions & Path Forward

LP-BP relaxation
Enhancing LP by Adding Larger Cliques
Hexagonal code test

LP-BP for MSS. Graphical Model.
min

b

∑
i

∑
σi

σi bi (σi )

s.t. ∀α :
∑
σα

bα(σα) = 1

∀α, ∀i ∼ α : bi (σi )=
∑
σα\σi

bα(σα)

∀α, ∀σα s.t.
∑
i∼α

σi = 1 : bα(σα) = 0

(a) choose a bit, j , bj (1) = 1; (b)

repeat ∀j

1,01  1,02 

1,05 

1,03 

1,04 

)( f

)( f
)( f

)( f

),( 41  

),,( 321  










1,0

1,1
)(

41

41






    

    
f

Mind the Gap!

Provable lower bound minj LP-BPj :-)
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The LP-BP solution contains a lot of information!
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Tanner graph of the “hexagonal”
(planar) code. 256 variables, 105
checks. Center bit was fixed
(σ120 = 1). MSS is 6.
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Active set, A = {i |bi (1) > 0}, of
the LP-BP solution (shown in
gray) consists of 42 variables.
LP-BP lower bound for MSS is
≈ 5.5.
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Reducing the Gap

Follow the logic of [cutting plane +++]

F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, An application of
combinatorial optimization to statistical physics and layout design, Operations
Research, 36(3):493513, 1988.

F. Barahona and A.R. Mahjoub, On the cut polytope, Mathematical
Programming, 36:157173, 1986.

J.K. Johnson, Convex Relaxation Methods for Graphical Models: Lagrangian
and Maximum Entropy Approaches, Ph.D. thesis MIT 2008.

J. Johnson, D. Malioutov, A. Willsky, Lagrangian relaxation for MAP estimation
in graphical models, 45th Annual Allerton Conference on Communication,
Control and Computing, September 2007.

D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, T. Jaakkola, Tightening LP
Relaxations for MAP using Message Passing, Uncertainty in Artificial
Intelligence (UAI) 24, July 2008.

N. Komodakis, N. Paragios, Beyond loose LP-relaxations: Optimizing MRFs by
repairing cycles, Computer VisionECCV 2008.

T. Werner, Revisiting the Linear Programming Relaxation Approach to Gibbs
Energy Minimization and Weighted Constraint Satisfaction, IEEE Trans. on
Pattern Analysis and Machine Learning, August 2010.
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Enhancing LP by Adding Larger Cliques
A B

D C

E

A B

D C

E

A B

D C

E

1

1

C

E

D

B

A

E

B

D

D

E

B

=

=

=

=

=

=

1

1
1

Bit-graph

Bit-graph chordalized
(triangulated)

frustrated bi-partite

junction-tree with new
cliques/checks

Addition of all the new ”1” factors does not change the space of solutions
GBP and GLP are exact on the junction tree (modified graphical model,
GLP=Generalized LP), i.e. GLP/GBP applied to the entire new graph closes

the gap! :-) Primal & Dual GLP

However the number of constraints is exponential in the junction tree width
(size of the largest cliques of the junction tree minus one) :-(
How about trying to apply it to a subgraph? Which sub-graph to choose? ⇒
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Frustrated (sub-) Graph

Definition (Frustrated (sub)-Graph)

Consider solution of LP-BP over a graph in terms of bα, bi (beliefs) and call a binary
configuration σ allowed (or SAT) on a sub-graph if respective beliefs are strictly
positive. Then we say that the sub-graph is frustrated if there exists no allowed σ
which satisfies all the click constraints simultaneously.

[Equivalent definition can be made in the dual
domain.]

Theorem (Frustration is a certificate of the gap)

Suppose we run the LP-BP by fixing one variable node to be in the SS. Then a duality
gap is observed iff there exists a frustrated subgraph. [* modulo a degeneracy]
Moreover, a frustrated sub-graph can only be contained within the active set of the
LP-BP output. [Proof uses dual formulation.]

Our approach/strategy

Look for a small frustrated sub-graph

Chordalize the sub-graph and modify LP-BP respectively by adding new clique
constraints

Repeat till the gap closes
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Hexagonal (planar) code test
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Active set (gray) is frustrated but too
large (max clique size is 11). Frustrated
(triangulated) subgraph of 13 nodes
with maximum clique size 6 is shown in
red.
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One iteration (adding all the clique
constraints for the “red frustrated”
subgraph (from the left) closes the gap.
Minimum stopping set of the hexagonal
code containing central bit is shown.
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Conclusions/Results

Described graphical transformations (based on bit fixing and
frustration) provably reducing the gap in LP-BP relaxation of the
MSS combinatorial problem. Went beyond cycles.

Illustrated utility of the transformation on the hexagonal code.

... Still working on

More elaborate and efficient methods (exact and heuristics) for
finding small (or smallest) frustrated sub-graphs (e.g. utilizing
various possible quantitative measures of frustration)

Select bit nodes to fix (trying both 0 and 1) so as to ”cut”
frustrated loops and generalized loops (alternative to enhancing LP
→ solve 2k LP’s and take best solution)

Pruning some of the extra constraints (not all of them are needed)

BP (iterative and distributed version) of the scheme

Application to other combinatorial problems in coding (decoding,
minimum codewords, etc)

Role of the graph transformations (frustration and fixing based) in
loop calculus
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Primal & Dual (Generalized) LPs

Primal (Generalized)LP and Dual (Lagrangian Relaxation)

(Generalized)LP-BP

min
b

∑
a

∑
σa

fa(σa)ba(σa)

∣∣∣∣∣∣ consistency ∀c ⊂ a, ∀σc : bc (σc ) =
∑

σa\σc
ba(σa)

normalization ∀c : ∀σc , 0 ≤ bc (σc ) ≤ 1,
∑

σc
bc (σc ) = 1

(Generalized)LR-LP

max
η

min
b

∑
a

∑
σa

fa(σa)ba(σa) +
∑

c

∑
a⊃c

∑
σc

ηa→c

bc (σc )−
∑

σa\σc

ba(σa)

∣∣∣∣∣∣
normalization

a, c stand for all the cliques (nonzero intersection of two cliques is
also a clique; a ∩ b = c 6= ∅ → c ∈ a, b)

η are “message” variables

General. For the case of interest (here): fa(σa)→ σi

Enhancing LP
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Primal & Dual (Generalized) LPs

Lagrangian Relaxation (II)

Lagrangian Relaxation of ML

min
σ

∑
a

fa(σa) = min
σ

∑
a

fa(σa, η) ≥ max
η

∑
a

min
σa

fa(σa, η)︸ ︷︷ ︸
convex LR

fa(σa, η) , fa(σa) +
∑
c⊃a

ηc→a(σa)−
∑
c⊂a

ηa→c (σc )

η’s may be regarded either as messages or Lagrangian multipliers

≥ ⇒ = iff {fa(·, η)} are all simultaneously minimized by a global σ

The LR is convex

Convex LR → LR-LP

max
η

∑
a

min
σa

fa(σa, η) = maxη,γ
∑

a

γa

∣∣∣∣∣
∀a,σa : fa(σa,η)≥γa

At optimum γa = min fa(·, η)

Dual of the LR-LP = LP-BP. Complementary Slackness:
ba(σa)(fa(σa, η)− γa) = 0, hence, supp ba ⊆ arg min fa(·, η).

Duality gap = frustration: there is no σ s.t. ∀σa : 0 ≤ ba(σa) ≤ 1

Enhancing LP
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